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The Basic Problem Addressed

• A new system such as a new spacecraft is to be 

evaluated for its reliability* 

• Part of the evaluation involves determining the number 

of tests to perform before acceptance

• The evaluation also involves dynamically tracking the 

reliability evolution of the system with test and operation

• To optimize resources, the evaluations need to utilize all 

available information

• Uncertainties also need to be treated and be quantified
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*Safety is treated as part of reliability here 
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Basic Concepts: Design Reliability and 

Demonstration Tests

• Design reliability is the probability that a new 

system has no inherent failure-causing faults

• Demonstration tests are conducted to detect any 

such inherent failure-causing faults

• Demonstration tests can be partial tests or can be 

test flights

• A major issue: How tests are needed to 

demonstrate a given reliability to a given certainty?
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Factors Determining Number of Tests to Conduct

• From reliability growth principles the required number 

of tests depends on three major factors:

– Initial Assurance Level 

– Fault-Detection Effectiveness

– Corrective Action Effectiveness

• Objective: Develop an approach that incorporates 

these factors and quantifies the reliability after a 

given number of tests 
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Framework of the Bayesian Approach

• The reliability estimate is described by a probability 

distribution to account for uncertainties

• The distribution gives the mean, median, and 

uncertainty bounds

• An initial distribution (prior distribution) is 

constructed to account for initial knowledge

• The distribution is updated from the results of a test 

using Bayes theorem  

• This updating is continued to determine the number 

of required tests or to track performance 
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Advantages of the Bayesian Approach 

• The Bayesian approach can utilize both quantitative 

and qualitative information

• Uncertainties are comprehensively quantified 

• Assessments are dynamically updated as 

information is gained from the tests

• The Bayesian approach is standardly used in NASA 

risk and reliability assessments

• Software exists that can carry out the evaluations in 

an efficient manner
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Inputs to the Bayesian Approach

• The Prior System Reliability Estimate is determined 

from the bases for the Initial Assurance Level:

– Hazard analyses and FMEAs

– Reliability and Risk analyses

– Oversights and Reviews

• The Fault Detection Probability and the Fault Correction 

Probability Estimates are determined using test and 

repair information:

– System specific data

– Shuttle analyses and data

– Constellation analyses
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Applications to Determine the Number of 

Required Failure-Free Tests

• The next slide gives the number of required failure-free tests 

as a function of the initial assurance level

• The second slide overlays the curve for the binomial estimate 

which inaccurately treats the tests as throw-away tests

• The third slide quantifies the uncertainty and shows how it 

decreases with tests even if the initial information is uncertain

• These slides show the decision-making information provided 

using the Bayesian approach

• These results can be extended to cover the cases where 

failures or faults occur during the testing 
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Failure Probability Estimates Versus Number of Failure Free 

Tests and Initial Failure Probability Estimate
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Failure Probability Estimates Compared to the Binomial Sampling Estimate 

Which Models the System Tests as Throw-Away Sample Tests
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Application to Track Reliability Growth

• The next slide shows the application to track the reliability 

growth of the Space Shuttle

• The application updates the estimate for each next flight 

based on flight history information

• A Kalman filter is basically used on a transformed scale 

with Bayesian updating

• Both forward estimates and back estimates can be made 

• Fault occurrences as well as failure occurrences are 

handled

• Software is developed to allow efficient application
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Summary

• Key problems for a new system are the number of tests 

to conduct and the tracking of reliability

• The analysis needs to incorporate engineering 

information, reviews and oversights, and statistical data

• Bayesian analysis has these capabilities for dynamically 

updating estimates and quantifying uncertainties

• The application to number of tests needed shows the 

importance of incorporating the initial assurance level

• The application in tracking Shuttle shows the importance 

of dynamically tracking actual reliability growth 
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